SPI

Purpose: Initializes and Handles Serial Communications with Target Commander
Public functions:
SPIM_InitializeSPI – Initializes SPI interface

Request_IR_Illumination – Asks target commander to illuminate IR selected IR beacon

Query_Current_Target – Asks commander to return current target

ResponseDecoder – Decodes Hex input from target commader, converting to enumerated event_t
SPIM_InitializeSPI

 Parameters: None.

 Returns: None.

 Description: Initializes SPI mode and transfer rate

Pseudo-Code:

 Initialize Baud Rate to 12.21kHz

 Initialize Clock to Mode 3

 Set as Master

 Enable Slave Select

 Enable SPI Interupts

 Make sure normal mode is enabled

 Enable SPI

 EnableInterrupts

SPI_Transmit_And_Receive

 Parameters: A number representing a specific command.

 Returns: A number representing a specifc response to the command

 Description: Performs data tranfer with Target Commander

Pseudo-code:

 READ RECEIVE REGISTER

 Wait for byte to be transfered

 Once the data transmitting is complete, write SPIDR data register with QueryData

 WRITE SEND REGISTER

 Wait for byte to be received

 Once the data receiving is complete, read SPIDR data register

 READ RECEIVE REGISTER

 Wait for byte to be transfered

 Once the data transmitting is complete, write SPIDR data register with 0xFF

 Wait for byte to be received

 Once the data receiving is complete, read SPIDR data register

 Return the data received

Query_Current_Target

Parameters: None.

Returns:

 Response from Target Commander in number form. See the TC info sheet

 for meaning. If the bot sent and invalid command it will return 0

 indicating failure.

Description

 To query the Target Commander, a byte of 0xAA is sent to the Target

 Commander. The Target Commander will process the query and during

 the second byte of the exchange return 0xCx, where x is the number

 of the currently active target.

Pseudo-Code:

 set receive = SPI_Transmit and Receive, passing 0xAA

 return receive

Request_IR_Illumination

 Parameters

 Give the function the number which represents the beacon you want to

 illuminate (see TC info sheet).

 Returns

 Response from Target Commander in number form. See the TC info sheet

 for meaning. If the bot sent and invalid command it will return 0

 indicating failure.

 Description

 To request that the Target Commander illuminate a specific Goal

 beacon, send a byte of 0xEx to the Target Commander, replacing ?x?

 with the number of the Goal beacon to be illuminated. The Target

 Commander will immediately reply with 0xFB, indicating that the

 request has been forwarded to the field and the TC is busy waiting

 for the field?s reply. Repeated Enable IR commands will be responded

 to with 0xFB until the field responds to the TC. Once the Target

 Commander receives confirmation from the field, the TC will respond

 to the next Enable IR command with the current status of the

 requested beacon (0x4x ? 0x7x). Between the time that an Enable

 IR command has been received and the beacon status is returned by

 the field, a Beacon Status command may not be issued. If a Beacon

 Status command is received during this time, the TC will respond

 with 0xEx.

Pseudo-Code:

 switch statement cataloguing possible return values (input beacon number, output 0xE[beacon#_in_hex])

 Send hex-code to Targer commander using SPI_Transmit_And_Receive

 set return value to Receive

 return Recieve

ResponseDecoder

Purpose: Convert hex reponses into easily interpretted enumerated types Event_t

 Parse the FirstWord (4 bits)

 Parse the SecondWord (4 bits)

 // Filter out the responses

 switch (FirstWord)

 case (0xC0):

 return EV_RECIEVED_TARGET;

 case (0x40):

 return EV_BEACON_INNACTIVE;

 case (0x50):

 return EV_BEACON_ACTIVE_NOT_ILLUM;

 case (0x60):

 return EV_BEACON_ACTIVE_ILLUM;

 case (0x70):

 return EV_BEACON_HIT;

 case (0x80):

 return EV_BEACON_HIT; //Duplicates case 0x70

 case (0xD0):

 switch (SecondWord)

 case (0x0E):

 return EV_GAME_NOT_STARTED;

 case (0x0A):

 return EV_RETURN_HOME;

 case (0x0D):

 return EV_GAME_OVER_RED_WINS;

 case (0x0C):

 return EV_GAME_OVER_GREEN_WINS;

 case (0xF0):

 switch (SecondWord)

 case (0x0F):

 return EV_OFFLINE;

 case (0x0B):

 return EV_COMMANDER_BUSY;

 case (0x0E):

 return;

 case (0xB0):

 return;

 case (0xE0):

 return;

 default:

 return;
