Movement
Purpose: Control simple movement on; rotating and on tape
Public functions:

SettingAngle - Expects Target Angle in ticks, robot will turn to face it

DrivingTape - Just say where on the tape it should walk

CalculateTargetAngle – Calculates angle to a target position, based on bots current position

LeftSpeed – Sets PWM/speed of Left wheel

RightSpeed – Sets PWM/speed of Left wheel
*Not to be confused with WheelSpeed, which performs PID, and then calls these functions to set wheel speed

*Functions built to be inserted into loops.

SettingAngle

Purpose: Turns bot until facing target angle

Inputs: TargetAngle

Return Value: Status indicator (1 if function is still active, 0 if function has finished)

 Declare Integral=0 as static variable

 Set CurrentAngle using GetAngle()

 Set Delta to the difference from target angle

 if we still aren't near enough to the target(using a threshold)

 Set Wheel speed to rotate at low value to avoid inertia in physical system

 return 1 because the function has not reached target position yet

 Since this is past the if statement, the bot must be at target angle

 Set WheelSpeed(0,0);

 return 0 //function is complete

}

DrivingTape

Purpose: Drives along tape using two sensors in front to recognize when we come off the line and correct

Inputs: None

Return Value: Status (1 for still active, 0 for finished Driving Tape (when the end of the line is reached)

 *Always Moving Forwards

 if(Neither left or right sensor detects Tape)

 We go straight on the line using WheelSpeed function

 return 1, DrivingTape is still active

 if(Right Sensor only detects tape)

 Veer Right using WheelSpeed function

 return 1, DrivingTape is still active

 if(Left Sensor only detects tape)

 Veer Left using WheelSpeed function

 return 1, DrivingTape is still active

CalculateTargetAngle

Purpose: Calculates Angle from bot to target

Inputs: None

Return Value: Target Angle (Angle from bot to target)

 Set CurrentTarget with GetTarget() function

 Get TargetLocation with GetTargetLocation(CurrentTarget)

 DeltaX = TargetLocation.x - GetXpos()

 DeltaY = TargetLocation.y - GetYpos()

 Find Distance from bot to target:

 Distance = sqrt(DeltaX*DeltaX + DeltaY*DeltaY);

 //Get Angle (assuming quadrants I or IV)

 ArcTan =atan(DeltaY/DeltaX);

 ArcSin = asin(GUN_TO_CENTER/Distance); //This is a correction term, since the gun is not in the bot center

 RadsToTicks = TicksPerRotation / (2*PI);

 if(Target is one of the bases; Green or Red)

 TargetAngle = (int)ArcTan*RadsToTicks;

 Otherwise:

 The target is just one of the numbered targets, and we don't want to point straight at it, rather we want to use the gun

 which points to the side (90 degree correction), and is off-centered (arcsin correction)

 TargetAngle = (int)((ArcTan - ArcSin)*RadsToTicks) - TicksPerRotation/4;

 *If angle is in quadrants II or III, we need to correct by a phase factor

 If Quadrant I

 TargetAngle += (float)TicksPerRotation/2; //Quadrant II

 TargetAngle = TicksPerRotation/2 + TargetAngle; //Quadrant II

 else

 TargetAngle = -TicksPerRotation/2 + TargetAngle; //Quadrant III

 return TargetAngle;

LeftSpeed

Purpose: Set Left Wheel Speed

Inputs: DutyCycle

Return Value: None

 if(Duty > 0)

 LeftFor(Duty)

 if(Duty < 0)

 LeftBack(abs(Duty))

 if(Duty == 0)

 LeftStop()

LeftSpeed

Purpose: Set Right Wheel Speed

Inputs: DutyCycle

Return Value: None

 if(Duty > 0)

 LeftFor(Duty)

 if(Duty < 0)

 LeftBack(abs(Duty))

 if(Duty == 0)

 LeftStop()

RightFor

Purpose: Set right Wheel Speed Forward

Inputs: DutyCycle

Return Value: None

 Set polarity high duty cycle for PWM1

 Set PWMDTY0 = (FULL_DUTY*Duty)/100, where FULL_DUTY is a constant to avoid overdriving the motors

 Set port LO for other H-bridge pin, to set motor Direction to Forward

Rightback

Purpose: Set right Wheel Speed Backward

Inputs: DutyCycle

Return Value: None

 Set polarity LO duty cycle for PWM1

 Set PWMDTY0 = (FULL_DUTY*Duty)/100, where FULL_DUTY is a constant to avoid overdriving the motors

 Set port HI for other H-bridge pin, to set motor Direction to Forward

RightStop

Purpose: Set right Wheel Speed Backward

Inputs: None

Return Value: None

 Set PWMDTY0 = 0 to stop the wheel (Polarity is already set appropriately)

LeftBack

Purpose: Set right Wheel Speed Forward

Inputs: DutyCycle

Return Value: None

 Set polarity high duty cycle for PWM1

 Set PWMDTY0 = (FULL_DUTY*Duty)/100, where FULL_DUTY is a constant to avoid overdriving the motors

 Set port LO for other H-bridge pin, to set motor Direction to Forward

LeftForward

Purpose: Set right Wheel Speed Backward

Inputs: DutyCycle

Return Value: None

 Set polarity LO duty cycle for PWM1

 Set PWMDTY0 = (FULL_DUTY*Duty)/100, where FULL_DUTY is a constant to avoid overdriving the motors

 Set port HI for other H-bridge pin, to set motor Direction to Forward

LeftStop

Purpose: Set right Wheel Speed Backward

Inputs: None

Return Value: None

 Set PWMDTY0 = 0 to stop the wheel (Polarity is already set appropriately)
